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THE LAGRANGE MULTIPLIER RULE ON MANIFOLDS
AND OPTIMAL CONTROL OF NONLINEAR SYSTEMS*

J. C. P. BUSY

Abstract. In this paper we present a differential geometric approach to the Lagrange problem and the
fixed time optimal control problem for nonlinear time-invariant control systems. We restrict attention to
first order conditions for optimality and present a generalized Lagrange multiplier rule for restricted
variational problems. Our treatment of the optimal control problem uses a recently proposed fibre bundle
approach for the definition of nonlinear systems.
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1. Introduction. The classical problem of the calculus of variations is the Lagrange
problem: find a curve ¢:[0, T]->R" from some class of curves, e.g. piecewise con-
tinuous, which satisfies certain end point conditions and minimizes an integral of the
form

b
J L(o(1), $(2), 1) dt.

In addition, one might impose restrictions on the curves of the form

F(&(1), $(2),1)=0.

Such problems were already studied by Euler and Lagrange at the end of the eighteenth
century. A comprehensive treatment of the calculus of variations and its use to solve
the (restricted) Lagrange problem is given by Carathéodory in [8]. It includes references
to classical work. An important difficulty using variational techniques for solving the
restricted Lagrange problem is caused by the end point conditions. It may occur that
restrictions and end point conditions are such that no admissible variations of an
admissible curve exist (except for the trivial one). So, such an admissible curve is
extremal. Carathéodory studies this phenomenon by introducing the concept *“class of
the problem;” no problems arise when the class equals zero. In another general
reference on the calculus of variations [3], Bliss introduces the concept ‘“‘abnormality
of certain order.” He calls a problem normal (abnormal of order zero), if there exist
nontrivial admissible variations. Both Carathéodory and Bliss need the definition and
existence of Lagrange multipliers as a prerequisite for defining “class” and ‘‘normality.”
In this paper, which is based on unpublished course notes of Takens [20], we consider
the generalized variational problem on manifolds, restricting attention to first order
conditions (we speak of stationarity rather than optimality). We introduce the concept
of formal stationarity for restricted problems. This is stationarity with respect to
formally admissible (i.e., admissible up to first order in the variation parameter)
variations. This concept is stronger than stationarity. We then define restricted vari-
ational problems to be ‘‘normal” if stationary curves are also formally stationary.
Normal as we use it, means not quite the same as for Bliss. In our terminology it might
occur that in normal problems there exist neither formally admissible nor admissible
variations of a stationary admissible curve. It is the same for those problems which
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allow nontrivial formally admissible variations. Our approach to normality does not
rely upon the definition of Lagrange multipliers. The Lagrange multiplier rule is given
in § 3 expressing that a necessary and sufficient condition for formal stationarity for
a restricted variational problem, is the existence of a stationary curve for a related
unrestricted problem on a higher dimensional manifold. Then the theory of integral
invariants of Cartan [7] can be used to express stationary curves for the latter problem
as characteristic curves of a certain differential 2-form. The problem of normality is
postponed to §§ 4 and 5 where the unrestricted Lagrange problem and the nonlinear
optimal control problem are formulated as restricted variational problems. The former
is merely given as an example and normality is proven, as to be expected. In our
opinion the latter has value in itself. Moreover, it incorporates a recently introduced
formulation of nonlinear control systems on fibre bundles (see [14], [18] and [21]).
We shall see that the variational problem associated with an optimal control problem
with clamped end points, will not always be normal as was already clear from the
results in the books of Carathéodory and Bliss.

Variational problems on manifolds, using differential geometric concepts and
Cartan’s characterization for unrestricted problems, are also treated in various other
papers, e.g. [10], [11], [12], [13], [15] and [17]. The restrictions considered in these
references are induced by exterior differential systems or Pfaffian systems. They place
more emphasis on the generalized Euler-Lagrange equation as a necessary condition
for stationarity, treating the normality problem in about the same way as Bliss, except
for their use of modern differential geometric results and formulations. In our approach
the multiplier rule plays a natural role and normality is treated differently. Together
with the linkage to the fibre bundle approach to nonlinear control systems, we expect
that the given formulation of optimal control problems will be useful for studying
optimal feedback control laws. It can be extended to infinite horizon problems (see
[6]) in which case it might be particularly useful. The given approach is coordinate-free
and does not presuppose any regularity conditions on the cost function.

Finally, in this paper we shall use the notation given in [19]. For instance, if M
is a smooth manifold, TM is its tangent bundle (T, M is the tangent space at x € M)
and T*M is the cotangent bundle. If f: M - N is a smooth mapping between smooth
manifolds M and N then f,: TM - TN is its lift to the tangent bundles and for any
k-form w on N, f*w is a k-form on M which is defined by (f*o)(v) =o(f,w) for all
ve TM. Some minor deviations from Spivak’s notation occur. The set of smooth vector
fields on a smooth manifold is denoted by Z(M). Furthermore, given a k-form w and
a vector field X on M, we define the contraction (xw of w with respect to X, to be
the (k—1)-form on M defined by

LX“’(XH e an—l)zw(X9 Xla' te 7Xk—l)
for
XieZ(M) (i=1,---,k—1).

Unless stated otherwise all manifolds, mappings, forms and vector fields are
assumed to be smooth, i.e. C~.

2. The unrestricted variational problem. Let M be a smooth manifold with
dim M =m, « a smooth (differential) 1-form on M and h: M - R a function. Denote
I=[0, T]=R. Let x,€ M, the initial point, be given and S = M be a connected smooth
submanifold of M, called the target set. Define for smooth curves ¢: I - M the action

(2.1) f(¢)=h(¢(T))+JI d*a.
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The variational problem w.r.t. this data, denoted by VP (M, a, xo, h, S) is the problem
to find curves with ¢(0)=x,, ¢(T) € S, which are locally optimal w.r.t. %, i.e. which
produce an optimal value for # to small variations of the curves. We shall restrict
attention to first order conditions, hence to stationarity rather than optimality.

We distinguish two cases:

1. Clamped end point (CE) problem. S={mz}, i.e. just one point mr€ M, and
h=0,

2. Free end point (FE) problem. S a connected smooth submanifold of M of
dimension= 1.

The following definitions are standard (see [10], [11] and [19]).

DEeFINITION 2.1. A mapping é:(—8,8)xI>M (for some 8>0) is called a vari-
ation of ¢:1->M if:

(i) ¢ is C* in each variable;

(ii) $(0,12)=¢(2) for all te[;

(iii) (e, 0)=(0), $(e, T)€ S for all £€ (=8, 8). :
The set of variations of ¢ is denoted by ¥, and for short we write ¢.(t) = ¢ (e, 1).
Depending on S we speak of CE or FE variations.

Stationary curves for the action are curves which make the first variation formula
vanish. The following definition makes this precise.

DEFINITION 2.2. A curve ¢:1-> M is stationary for VP (M, a, x4, h, S) if for all
b.€Vy:

L1 g(g0=0.
=0

de |,

For given variation ¢, € ¥, we can choose ¢, such that ¢. is identically equal to
¢ in some neighbourhood of x, and ; (¢*— *)a is arbitrarily close to zero (see [22,
§8 6, 7]). The same holds for the end point in the CE case. Therefore we may assume
that variations in ¥, are identically equal to ¢ in neighbourhoods of the initial point
and the end point (except of course for the free directions in the FE problem).

From now on we shall assume that the curves we consider are injective immersions.
This is a rather natural assumption as curves with double points are usually not optimal,
because of occurrence of a loop. In such cases we can formulate the variational problem
for piecewise injective curves as a sum of variational problems for each piece (see also
[19).

We can give another, equivalent, definition of stationarity in terms of vector fields
along ¢. By a vector field along a curve ¢: I > M we mean a smooth function V:I-» TM
which satisfies V(t) e T,yM. Clearly, each variation e ¥V, defines a vector field V
along ¢ by the formula

(2.2) vin=| &1, tel
de =0
with
(2.3) V(0)=0, V(T)=0(CE) or V(T)e TonS (FE).

We shall denote the set of vector fields along ¢ satisfying (2.3) by &,. Conversely,
given any vector field V e &, we can extend it (as ¢ is an injective immersion) to a
vector field X € Z(M) and construct a variation of ¢ by

(2.4) ¢ (1) = yx()((2)),
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where yx(g) denotes the flow of X over &. Let now o be an arbitrary 1-form on M
and let Lxw denote its Lie derivative w.r.t. X. Then

#*Lxo = 6" (1m LoD 0~ (1001

-4

de

We also have the well-known relation

(2.5)

(oo 9)e] =5

e =0(¢2‘w).

£ £

(2.6) Lyw = txdw + duyo.
Given V along ¢, we have for an arbitrary smooth extension X of V:

d a d d
27 ot () =do(vin. (7)) (5)=omme ()
27 ¢*Lyw (o) =do( V), é4(5) ) +alevn () = ¢*Lve |

(By /8t we mean the tangent vector evaluated at ) Then, for all extensions X of V
and induced variations cf. (2.4) we have the equality

2.8) P Lyw =2
de
So any Ve %, defines a class of variations ¢, of ¢ satisfying (2.8). These relations
between vector fields along ¢ and variations of ¢ show that we can equivalently define
stationarity by:
DEFINITION 2.2'. ¢ is stationary for VP (M, a, X9, h, S), if for all VeZ,:

oFo.
e=0

(2.9) dh(V(T))+j ¢*Lya=0.

This definition easily leads to a useful and well-known characterization of stationary
curves.
PROPOSITION 2.3. ¢ is stationary for VP (M, a, Xy, h, S) if and only if

(2.10) Dy (;—t )err da Vtel,
t

with ker da ={ve TM|da(v, w) =0,Ywe T, ,,M}, and

(2.11) (dh+a)|s(¢(T))=0,

where | denotes restriction to S.
Proof. Using Stokes’ theorem we have for Ve &,

J o*Lya =J ¢*vyda+a(V(T)).
1 1

So sufficiency is trivial.

Now suppose ¢ is stationary and (2.10) is not satisfied for some r€l. Then by
the smoothness we can construct a V along ¢ with V(0) =0, V(T) =0 (hencee T4(1)S)
and

J ¢*LV da #0.
1

However, this contradicts the stationarity of ¢. Hence (2.10), and therefore (2.11),1s
satisfied. O
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Condition (2.10) expresses that da is an integral invariant for stationary curves
(see [7]). ¢ is called a characteristic curve of df. Another way of looking to (2.10) is
to say that ¢ is an integral curve of the Cartan system C(da) (i.e. the Pfaffian system
generated by all 1-forms ux de, X € (M) arbitrary) (see [11]). Condition (2.11) is
the so-called transversality condition at the end point. It is interpreted as to disappear,
or be trivially satisfied, in the CE problem (k=0 and S consists of one point).

3. The restricted variational problem. We may introduce restrictions on curves
in M via smooth codistributions on M. In §84 and 5 it is shown that the classical
Lagrange problem and the nonlinear optimal control problem can be formulated as
variational problems with such restrictions. Let E be a given codistribution on M.
Denote the variational problem VP (M, a,xq, h,S) with restriction E by
VP (M, a, xo, h, S, E). We call a curve ¢: I > M admissible for this problem if

3.1 ¢*B=0 VBeE.

We shall assume throughout that E is smooth and of fixed dimension p, spanned locally
by 1-forms B, - -, B, So locally (3.1) has to be satisfied for B=p8; (i=1,---,p)
only. We denote the class of admissible variations of ¢ by

(3.2) Ve={£eV,|¢B=0,VBE}.
In the vector field terminology we consider the set of admissible vector fields V € &:
(3.3) ¥5={Ve%,|B(V)=0,VBeE}.

The following definition is then natural.
DerFiNiTiON 3.1, An admissible curve ¢:I->M is  stationary for
VP (M, a, X0, h, S, E) if one of the following two equivalent conditions is satisfied:

() d/de|.=0 F(b.)=0, for all ¢, V%,
(i) dh(V(T))+], ¢*Lva =0, for all Ve Z%.

Note that this definition implies that isolated admissible curves, i.e. admissible
curves for which there exist no admissible variations, are stationary. Such situations
may occur as shows the following example.

Example 3.2. We consider on M = TR®*XR the restricted variational problem
VP (M, &, my, 0, {mzr}, E) with mo, mr € M and E spanned by:

Bi=dx—V1+y*d, B,=dy—yds,
where (x, y, %, y, t) are coordinates for TR>XR. Now let ¢:[0, T]»> TR*XR, given by
¢(t) = (d’x’ ¢y’ ¢i7 ¢}3’ t)

be admissible. Then

¢x=\/1+¢§a (ﬁy:(by-
So ¢,(t) is the length of the curve ¢, from O to z Hence, any variation of ¢, with
fixed end point yields a change of the x-coordinate of the end point. Therefore there
are no nontrivial admissible variations of ¢.

Clearly, the situation of isolated admissible curves requires careful attention and
its occurrence depends on both the restrictions and the end point conditions. The way
we shall handle this difficulty is suggested by Takens [20]. First observe that admissible
variations satisfy the codistribution constraints for all small |¢. We may consider
variations of the unrestricted problem which satisfy the restrictions to first order only.
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To do so denote

‘WE—-{ %

® §£e ¢ de mo

(3.4) i
YE={VeZ,|¢*L,B8=0,VpeE}

¢EB=0, VBEE},

and define:

DEerFINITION 3.3. An admissible curve ¢:I->M is formally stationary for
VP (M, a, x,, h, S, E), if one of the conditions of Definition 3.1 is satisfied with °V§
replaced by W% and Z5 by ¥5.

We call elements of %5 formal variations of é. Note that ¥'5g W5, so that
formal stationarity implies stationarity, but not necessarily the converse. Example 3.2
can be used to show that. We define

DEeFINITION 3.4. VP (M, @, X0, h, S, E) is normal for an admissible curve ¢, if
stationarity of ¢ implies formal stationarity of ¢.

We defer the problem of normality to § 5, where it is studied for the special classes
of variational problems which are of concern to us here. For historic reasons we use
the terminology of [3]. However, our notion is weaker in the sense that it also allows
the situation that neither formally admissible nor admissible variations exist.

Before giving the main result of this section we shall dwell some time upon the
global character of the results to be obtained. In fact, a global problem can easily be
broken up in finitely many local problems.

PrROPOSITION 3.5. Let ¢: I > M be an injective curve. Let {I"}(I* =[a*, b*]) be
a finite collection of closed subintervals of I such that {int I*} is an open covering of
int I Define ¢* = |, the restriction of ¢ to I*. Then, ¢ is (formally) stationary for
the CE problem VP (M, a, x,,0,{x7}) (or its restricted variant) if and only if ¢* is
(formally) stationary for VP (M, a, ¢(a*), 0, {¢ (b*)}) (orrestricted), for all . Similarly
for the FE problem VP (M, a, xo, h, S) with local problems VP (M, a, ¢(a*), h*, S*)
where h* =0, S* =M if b* # T and h" = h, S* = S, otherwise.

Proof. Recall that variations are identically equal to ¢ at some neighbourhood
of the clamped begin (and end) point, according to the remark after Definition 2.2.

First consider stationarity for CE problems. If ¢ is stationary then any variation
of a subproblem on I* can be considered to be a variation of ¢ on I (equal to ¢
outside I*). So stationarity holds for the subproblem. To prove the converse choose
a partition of unity {f*“}(f*:I->R) and write

(3.5) ¢e=¢+m=¢+§f”ne.

As ¢* =" +f*n, is a variation of ¢* the result follows immediately. For formal
stationarity we need the additional observation that

(3.6) LI (grrgy=purs
=0 de

gy pux 4
de . -0 (7] B)'—f *ds 0(¢:§B),

& £=

so that global formal variations yields local formal variations and vice versa. In the.
case of an FE problem we note that a variation of a subproblem (both for b* =T or
b* # T) can be approximated arbitrarily close by an FE variation of ¢ on I which
equals ¢ outside I*. Hence stationarity of ¢ yields stationarity of ¢*. Conversely,
note that if ¢* is FE stationary (b # T) then ¢* is also CE stationary. Hence we
can again use a partition of unity argument as above. 0O
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After this intermezzo we return to the development of the main theorem. Let
m: T*M > M denote natural projection and recall from [11] the definition of the
canonical 1-form 6 on T*M:

(3.7) 6(&)(v) =¢&(my(v)) forall ée T*M, ve T,T*M.

We need one more important 1-form.

DEerFINITION 3.6. Let M be a manifold with 1-form a and codistribution E of
fixed dimension. Let #g:E > M denote the natural projection and let 6 be the
canonical 1-form on T*M restricted to E. Then the Cartan form 6, on E associated
with « is defined by

(3.8) 0, =mEa+ 6.

Now we are ready to formulate the generalized Lagrange multiplier rule.

THEOREM 3.7. An injective curve ¢:I->M is formally stationary for
VP (M, a, xo, h, S, E) if and only if there exists an injective curve n: I » E withmg o n = ¢
which is stationary for VP (E, 6,, ey, h o g, x(S)), for some e,€ wg'(x,) and some
section y: M - E.

Proof. We first give the proof for the CE problem. Let n:I - E be given with
g ° 1= ¢ and 7 stationary for the problem on E. By Proposition 3.5 we can restrict
attention to curves in a coordinate neighbourhood such that E is spanned by forms
B1, - * -, Bp on this neighbourhood. Furthermore, note that an arbitrary vector field
along 7 yields a projected vector field along ¢ as ¢ and 7 are injective immersions.

To prove that ¢ is formally stationary we first have to prove that ¢ is admissible.
Therefore choose local coordinates x for M and let 8, - -, B, be a local basis for E.
Then we can give coordinates (x, y) for E; that is, an element (x, }:f;] yiBi(x)) € E has
coordinates (x, y)(y =(y1, - -, ¥p)). By definition of the canonical form on E< T*M
we have for ve T, E:

p P
(3.9) 0 (x, y)(v) = (Zl )’iﬂi(x)> (me *v)= % yi(mEB:)(v).
i= i=1
Therefore, given an arbitrary vector field X on E,
(3.10) X=% X243 v>
’ =1 xS 10)’]"
we obtain

(Lxbe)(xy) = T Ly(yrB)(x, y)
(3.11) -

= £ YimEB)(x )+ £ yLx(nEBI(x )

Now let in these coordinates 1 be given by

(3.12) n(1) = (¢(2), A(2))
(¢ and A are x and y coordinates, respectively) and define
d
Wi =wi()—| ., i=1,---,p,
9Yi l () P
where w; is arbitrary on I with w;(0) = w;(T) =0. Clearly W, (i=1, - - -, p) are vector
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fields along » with projection mg, W; =0. Then with use of (3.11)
P
(3.13) J‘ n*Lwi0a=J wi(t)n*mEBi+ Y. J A(O)n*Lw,(7EB:).
I I i=1J1

Moreover, use of (2.7) shows that the last term equals zero. As the stationarity of 7
makes the left-hand side of (3.13) equal to zero, we have

0= J. wi(n*mEB = J wi(1)d*Bi,
1 1

for arbitrary w;. This proves that ¢*B,=0 (i=1,-- -, p), hence ¢ is admissible.
To prove the formal stationarity of ¢ let a vector field V along ¢ with V(0)=
V(T)=0 be given in coordinates:

n d
V=Y Vilt)—
i=1 3X; | o)
Define a vector field W along 7 by
n d
W)= 3 Vi)
i=1 Xi | m(n)

Then mg, W=V and the 3/dy,-components of W are zero. So use of (3.11) yields:

J n*Lwﬂa=J n*Lw(W’Ea)+J 1*Lwbe
I
(3.14) ! !

=j W*LW(”TEO‘)‘*i j Xi()n*Lw (mEB).
i I

i=1
¢(l))

J n*Lwb, = ¢*Lva+§ J Ai()@*LyB;.
I i=14J1

Moreover, use of (2.7) shows that

d d
n*Lw (7EB:) (5} ( )) =¢*Lyp; <;9—t

Substituting this in (3.14) yields

Stationarity of 7 makes the left-hand side zero. So ¢*LyB;=0 (i=1,- - -, p) yields
|, ¢*Lva =0. This implies formal stationarity.

To prove the converse, let ¢ be formally stationary. Given any vector field W
along n with W(0) = W(T)=0 we obtain, using (3.11),

J n*LW0a=J W*Lw(ﬂ'ﬁa)*'i J Wy;¢*Bi+§ J Am*Lw(mEBY),
I 1 i=1J1 i=1J1

i=1

with W, the 4/3y,component of W. As ¢ is admissible (¢*B; =0) we obtain, with
V = TE % W: )

(3.15) J TI*Lwem:J ¢*Lva+§ J Aip*LyB;.
1 1 i=1J1

Hence, we have to prove that we can find A;:I->R (i=1,- -, p) such that for all
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V € &, the following equality is satisfied
p
(3.16) J' ¢*Lya=—7Y J’ Ai¢*LyvB;.
1 i=1dJ171

Note that we then have 7(1)=Yi, A:(£)Bi(#(r)) satisfying the conditions of the
theorem. For simplicity we assume that p=1, i.e. E is spanned by one 1-form. We
omit the subscripts for A and B. To find an appropriate A in this case define a vector
field Z along ¢ such that 8(Z)=1 along ¢. Let

F,={V|V vector field along ¢, *LyB =0, V(0) =0},
F,={V|V vector field along ¢, V = ¢Z, ¢(0) =0}.
Then, any vector field V € &, can be written uniquely as the sum
V=V+V,, Vie%, V,e%,.
This is shown by the following argument. Given V, the differential equation:

o108 (2) 0w ds (200, 6,(2) ) + v (2).

$(0)=0
defines ¢: I >R uniquely. Now define
Vo=yZzZ;  Vi=—yZ

Then we have the appropriate splitting as V, € %, by choice and V, € %, because (use
(2.7) and (3.17))

sk _9__ - Ak _9_ — é— i =
¢ Lv,ﬁ(at)—¢> L"'B(at) t/f(t)dB(Z(t),qﬁ*(at))'thﬁ(at) 0.

Note that V\(T)=—V,(T)=—¢(T)Z(T) is not necessarily equal to zero. Now let V'
be arbitrary with V(0)=V(T)=0 and V=V,+V,=V,+yZ its unique splitting.
Then (2.7) and Stokes’ theorem yield

(3.17)

J. ¢*Lva=J d)*l.vdd‘l"J' d(a(V))=J d* iy, da+J d*uy, da,
1 I 1 1 1

where ¢*uy da(d/at) = da(V (1), ¢,(8/31)), by definition.
If 4(T)#0 (V,(T)#0) we define a constant C, such that

(3.18) J d)*Lva:J ¢*LV2 da“COlll(b).
I I

If y(T)=0 then |, ¢*Lya=], ¢*y, da by the formal stationarity of ¢, so that we
can choose C, arbitrarily and (3.18) still holds. Then define ¥, ¥,: I >R by

(319) ‘1,1 dt=¢*bzd,3, ‘I’z dt=(b*bz da
and A:] >R by
(3.20) X=P,+WA,  A(TD)=C,.

Then we have with use of (3.18)-(3.20)

"JI Ao*LyB =J Y, dt— Coy(T) =J ¢*Lya.
I

I
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So the chosen A satisfies (3.16) for p=1. Hence 7, given by 7(f) = A(£)B(p(2)), is
stationary w.r.t. 6, and mgn = ¢. For p>1 the proof is similar. For the FE problem
there is only a slight difference where we use Stokes’ theorem in the definition of C,.
Here we choose C, such that

(3.21) dh( V(T))+J ¢*Lva=J ¢* 1y, da+ Coy(T),
1 1

which is fine for ¢(T) # 0. If (T) =0, then Vo(T)=¢(T)Z(T)=0€ T41,S and as
V=V,+V,e Ty S we also have V| (T)e T,nS. Then formal stationarity with
V,(T)=0 shows that (3.21) holds for arbitrary choice of C, if ¢(T)=0. Then the
proof is valid for the FE case. Note that the section y defining the target set in the
problem on E is given locally by x(x) = (x, Cy) with C, as in (3.18) or (3.21). O

Note that the Lagrange multipliers are hidden in the formulation of Theorem 3.7.
They appear in the coordinate representation as A;(¢) (i=1,---,n). Theorem 3.7
forms the heart of this paper. It enables us to formulate the Lagrange problem and
the optimal control problem as a problem of finding characteristic curves of the
differential of a certain Cartan form (recall Proposition 2.3), provided the associated
restricted variational problem is normal for admissible curves. The most significant
examples of the use of Theorem 3.7 are the unrestricted Lagrange problem and the
optimal control problem. We discuss these in the next sections.

4. The Lagrange problem. Consider a smooth manifold Q (the configuration
space) with dim Q = n, together with its 1-jet manifold J'(I, Q) (see [11]), we should
in fact write J'(R, Q) but to express that ¢ is restricted to I we use the above notation).
Note that a point in J'(I, Q) consists of a point # € I together with a point (g, v) € TQ.
Thus

(4.1) JY(L Q)=TQXI,

and moreover, given a curve ¢: I > Q there exists a naturally associated curve ¢: 1 -
J'(I, Q) defined by
), t) , tel
L

(4.2) (1) = (w* (;f—

We denote ¢ =¢. Now suppose we have been given:
(4.3) £:JYI, Q)>R, h: Q-R,

called the Lagrangian and the end cost, respectively. Then the (unrestricted) Lagrange
problem is to find curves ¢: I - Q, with ¢(0) =g, Y(T) € S< Q, which minimize the
action

(4.4) f(¢)=h(¢(T))+JI L' (1)) dr.

We can formulate this as a variational problem on M =J Y(I, Q) with restriction on
curves in M to be naturally associated cf. (4.2) with curves in Q. Using [11, § 0.b],
this restriction is defined by a codistribution E on M, which is a canonical subbundle

of T*M =T*(J'(I, Q)). Moreover, in local coordinates (g, * * , @ 41, * * » G £) fOr
M, this subbundle E is spanned by 1-forms:
(4'5) ﬁi=in—4idt’ i=17.'.7n-

We shall call E the canonical (restriction) codistribution of the Lagrange problem and
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the variational problem so obtained the Lagrange variational problem. We already
noted that we may restrict attention to variations which are identical to ¢ on a
neighbourhood of clamped end points. So, CE conditions for ¢:1 - Q yield CE
conditions for ¢:I - J'(I, Q). Moreover, a target set S< Q gives rise to a target set
TSx{T} in J'(I, Q) with end cost ho 7 (m:J'(I, Q)= Q natural projection). The
following result is important.

PrOPOSITION 4.1. The Lagrange variational problem is a normal restricted vari-
ational problem for every admissible curve.

Proof. Given any admissible curve ¢ = ¢! (¢: 1> Q). We have to prove that if ¢
is stationary, then ¢ is formally stationary. We may restrict attention to vector fields
V € Z, which can be given in canonical coordinates by

. a
+ Vi) —
o) oq

(4.6) V)= Vq(t)a% e’

Suppose such a vector field satisfies:
4.7) ¢*LyB=0 VgBespan{dg; —4;dt}.

(Note that we may work locally, by Proposition 3.5.) We first assume that Q is
1-dimensional, so E is spanned by the form 8 = dg — 4 dt. Thus (4.7) implies, using (2.7):

0=6*1,8(2) =-dinar( Vo), 6:(2))+acven(Z).
So

avi(t)

(4.8) i

= Vi(1).

Now choose ¢, by
é. () = () +eVi(t), g () +eVi(1), 1).

Then ¢, is a CE variation of ¢ according to Definition 2.1 with

(4.9) %

, b:(1)=(V4(2), Vi(1),0),

e=

and
B (%) =§()+eVi() - (Y(1)+eVi(r) =0,

using (4.8). So ¢, is an admissible CE variation of ¢, so that by stationarity and (4.9)

d J‘ ¢fa=J ¢*Lya.
e=0JI I

0=—
de
This proves the theorem for dim Q =1. For dim Q> 1 the proof is similar. 0O
A direct consequence of Proposition 4.1 and Theorem 3.7 is the following corollary.
COROLLARY 4.2. An injective curve y: I - Q is a stationary curve for the Lagrange
problem, if and only if there exists an injective curve m: I E, with E the canonical

codistribution, such that Tg oM = ¢' and m stationary for an unrestricted variational
problem VP (E, 0, ¢/'(0), h, S) with Cartan form
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and
F=homomg,  S=x(TSX{T)),

where mg: E > M, 7: M - Q are natural projections, 0 is the canonical 1-form restricted
to E and x: M - E is some section.

Using Proposition 2.3 the stationary curves for the given unrestricted variational
problem are characteristic curves of df satisfying the transversality conditions. If we
choose canonical coordinates g, ¢, ¢t for J'(Q, I) and A for the fibres of E (B E: B =
Yi=1 ABs B: given by (4.5)), then

0_9'; Z A,ﬁ,‘*'o?dt.
i=1
Then n:t->(q(t), 4(t), A(t), 1) is a characteristic curve of df if

d A aZ d
—/\t=_a.v>A =_—’.7t3—t=.t7
Y aq(q 4,1), AD) aq.(q 4.1, () =4()
with giveﬁ initial and end point conditions for g, 4. This yields the Euler-Lagrange
equation:
0L

d ) aL,
Zz?(aq' (g 4, t)) P (g.4,1)=0

as a necessary condition on optimal curves. The transversality condition yields
dh
A(T)=—(q(T)), j=1,"--,n
(T) P (q(T)) i n

Remark 4.3. 1t is easily seen that we may also choose a =¥ dt+ g for any B E
in the formulation of the Lagrange variational problem. Indeed, we then also have
o*a = ¢p*(£dt), for all admissible ¢. Such a choice does not change the solution of
the Lagrange problem but only induces a translation of the canonical coordinates A
in E.

5. The nonlinear optimal control problem. We shall first recall the notion of a
general nonlinear control system as given in [4] and [21] and worked out in [18].

DErFINITION 5.1. A nonlinear (time-invariant) control system X =3(Q, B, f) is
defined by a smooth manifold Q, a fibre bundle 7: B~ Q and a smooth map f: B-> TQ
such that the following diagram commutes

f
T
(5.1) B \ / @
Q
We call T affine if B is a vector bundle and f restricted to the fibres of B is an affine
map into the fibres of TQ.

3 is called analytic if B and Q are analytic manifolds and f is an analytic map.
We say that : I-> Q is a trajectory of X if ¢ is absolutely continuous and

3
il

almost everywhere on I. With each trajectory ¢ we can associate a state-input trajectory

)Ef('r"‘(t/f(t))),
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{:I- B such that
(5.2) 7(£() = y(1), tl'*(;%} )=f(§(t)), tel

Q is called the configuration space cf. the Lagrange context. The fibres of B
represent the (state dependent) input spaces. In local coordinates g for Q and u for
the fibres 77'(g) we obtain the familiar equation ¢ = f(q, u) (with abuse of notation
f:(q, u)>(q, f(g, u))). A state-input trajectory ¢ will in such coordinates be denoted
by: £(t)=(y(?), v(1)), ¥ and v denoting the ¢ and u coordinates respectively. In the
sequel we will use f in both ways, how it is used will be clear from the context. If =
is affine then, in coordinates, f has the form

(5.3 Fla. ) =fol) + T ufi(a),

with u; €R, fy and f; vector fieldson Q (i=1,---,m).

We shall assume in the rest of this paper that f is an injective immersion.

Now, an optimal control problem can be interpreted as a certain variational
problem on the space of states and inputs, i.e. B, under certain restrictions, one of
these being the restriction to curves in B which are state-input trajectories of the
system. In fact, the approach to the Lagrangian problem for curves in Q can be
followed here with respect to curves in B. Therefore, let us first assume to be given
a function %:J'(I, B) >R, in analogy with the Lagrangian £ in § 4 and an end cost
function h: Q- R. We restrict attention to two cases:

CE optimal control problem: h =0, clamped end point;

FE optimal control problem: S = Q.

The optimal control problem OP (Z, %, qo, h, S) is to find {: I - B of Z with 7 {(0)=
Go, 72 {(T) € S and which are optimal w.r.t. the action

(5.4) ﬂ(£)=h(7°£(T))+£ %(¢'(n) ar.

As before we restrict attention to stationarity rather than optimality. The optimal
control problem can be defined as a variational problem on J (I, B) where the curves
are restricted to be naturally associated (cf. (4.2)) with curves in B which are state-input
trajectories of X. This implies restriction to a submanifold M < J (I, B) defined by

(5.5) M ={(w, t)eJ'(I, B)|f e m(w, 1) = 7, (W)},

with a:J'(1, B)~> B natural projection, together with restriction to the canonical
restriction codistribution on J'(I, B), similar as in the Lagrange problem. Therefore
the given optimal control problem can be defined as a restricted variational problem
VP (M, @, xo, B, S, E), with E the canonical codistribution on J'(I, B) restricted to
M, a =9y dt 7o m(x0) =g, and A=0, § one point in the CE case, or A=7omoh
and §=(TQX{T}) N M in the FE case. If we choose local coordinates g on Q, u on
the fibres 7~'(q), then canonical coordinates on J'(I, B) are given by (q, u, g, i, t).
Elements of M are then given by (q, u, f(gq, u), u, t), so that as f is an injective
immersion, natural coordinates on M are given by (g, u, 4, t). Then E, the canonical
codistribution restricted to M, is locally spanned by the 1-forms

Bir:dqi_'_fi(q’u)dty .=1,"',n,

Bn-‘-j:duj_ujdt’ j=la"',m7

(5.6)

where fi(q, u) denotes the ith coordinate of f(q, u) e T,Q.
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The question arises whether this variational problem is normal. The answer to
this question appears to be relatively easy for the important class of affine analytic
control systems, if we use some recent geometric techniques (see e.g. [14] and [15]).
Let the system be given by (5.3), let 2(Z) denote the Lie algebra generated by
fi(i=0,1,----,m) and J(g,) the maximal integral submanifold of 2(X) containing
the trajectory under consideration which initiates at gq,. Define ad® (fo, f)=F
ad*"" (fo, f;) =[fo, ad* (fo, f)lfor k=0,1,- - -,and &' ={ad* (f,,f); k=0,1,---,i=
1,- -+, m}. Then we can give the following proposition.

PROPOSITION 5.2. Let 2 be analytic and affine. Then:

The FE variational problems associated with OP (2, %, qq, h, Q) are normal.

If rank ©'(q,) = dim 3(q,), then the CE variational problems associated with
OP (X, %, q0,0,{q:}) are normal.

Remark 5.3. The condition in the CE case implies that the system restricted to
3(qo) has a controllable linear variational equation along the trajectory initiating at
do, Or this restricted system is locally controllable of first order along this trajectory
(see [2], [15] and [16]).

Proof. Weassume that J(qo) = n. The other cases are proved similarly by restricting
the system to the lower dimensional manifold J(g,). The manifold appearing in the
variational problem may be given coordinates such that ¢(z) =(¢%(1),0,0, t) (trajec-
tory ¢ in Q for input u =0). By breaking up the global problem in a series of local
problems we may assume that ¢(¢) belongs to this coordinate neighbourhood for all
te I Let a formal variation in these coordinates be given by

(5.7) E(e,)=(&e, 1), £ (e, 1), (e, 1), 1).

We shall prove that under the given conditions we can find an admissible variation £
of ¢ whichis an order &7 perturbation of £ As stationarity involves first order conditions
in £ only, the proof then follows immediately. Working out the conditions for formal
variations we see that

g(e, 1) =@ ()+en(t)+ C(e, 1),
(5.8) £4(e, 1) =eu(1)+ C"(s, 1),
(e, 1) =eu(1)+C(e, 1),
where Ci(s, t), C“(e,t) and C"(s, t) are all of order £* and equal to zero for t=0

and arbitrary e. Moreover, 7(t) satisfies the linear equation of variations with input
;U-(t) =(/J’l(t)7 Tty #m(t))’r:

(0 =T2(5(0) - m()+ £ A7) )

(5.9)
7n(0)=0.

Now consider for arbitrary C¥(g, 1) =(C¥&, 1), -+, C%4(g, 1))T of order 2 and satisfy-
ing C“(g,0)=C"(¢,0) =0 (arbitrary ¢) the equation

40 =1o@(0)+ £ f(a(0)(emi(0)+Ce 1),
(5.10) -
q(0) =qo-

Then from [5, Thm. 6] and [9], we know that for & small enough any solution of (5.17)
can be written as a unique convergent Volterra series. Working out this series and
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using the facts that ¢ is a trajectory of (5.10) for =0 and 7 satisfies (5.9), we see
that any solution of (5.10) can be written as {?(e, 1) = ¢?(t) + en(t)+ C(e, t), with
Cg, 0)=0, Cg, t)= O(e?). Hence,

(5.11) (e, 1) =({%(e, 1), eu (1) + C(&, 1), eu(1) + C (e, 1), 1)

is an admissible variation and an & perturbation of a formal variation. This proves
the assertion for FE problems. For CE problems we still have to show that we can
choose C"“(e,t) such that the solution ¢9(s,t) satisfies {9(e,1)=¢;=¢(1) (ie.
C%(g, 1) =0). By the local controllability of the system we can find C*(e, t) such that
ewi(1) + CH(g, 1)+ C*(s, t) yields a trajectory of (5.10) terminating in g,. Moreover,
the fact that the linear equation of variations (5.9) is controllable assures that we can
choose C*(g, 1) of the same order in & as C%(¢, 1), i.e. O(&?). This completes the
proof of the proposition. 0

The restriction to affine systems does not seem to be essential. The results of
Brockett and Crouch yielding the Volterra series solution for (5.10) can also be given
for nonaffine systems.

As controllable linear systems are first order controllable, the condition rank
&'(qo) =dim 3(qo) is satisfied for all (also noncontrollable) linear systems.

We give one example of a system which is controllable but not first order locally
controllable and which may give nonnormal variational problems.

Example 5.4. Let I =[0,1],4°=(0,0)" and

Gi=u, G.=qi+1.
Then
fo=(‘ﬁ+1>’ fl:(O)’ [‘fo’fl]=<2q )’ ad* (fo, fi)=0 for k=2.
1

However

i o A=~ (3):

so that the system is locally controllable, but

©'(qo) =span {(;)}

For u=0 we have the trajectory ¢(¢)=(0,?)” and ¢q' =(0,1)”. Any formal variation
& (t)+ en(t) for control zu(t) satisfies the linear equation of variations

() = u(t), 12(t) =201 () m, (1) =0,
with 7(0) =7(1) =0; (0) = (1) =4(0) =4 (1)=0. Hence

1

nl(t)=J u(o) do,  my(1)=0.
0

Therefore, any formal variation is of the form:

t T
(eJ w(o) da,t) +O(e?).

0
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We consider the formal variations with order & terms only. If these are to be &
perturbations of an admissible variation £(e,t) we should have, for some control
en()+C4 (e, 1)(C (&, 1) = O(£?),

(e, )=ep(D+CH (e, 1),  &le 1)=£&(e,1)+1,
with £(e,0)=q", £(¢,1) =q". Hence

é:l(’s’ t) = enl(t)+fl Cu(g’ 0-) do.g gnl(t)+cclz(£, t),
0

&le )= I+J" (emi(0) + Cl(e, 0))* do,

with the conditions £,(e,1)=0, &(e, 1) =1, for all || small. As 7,(1)=0 the first
condition is satisfied for all C4(e, t) such that C{(e, 1) =0, which can be obtained by
an appropriate choice of C“(g, t). The second condition implies that

g2 J' (m:(0))? do+ O(e*) =0.
0

So the choice of C* (i.e. C?) does not influence the &> term. Therefore if 1,(?) is such
that j'; (n,(0))?* do # 0, then &,(¢, 1) # 1. Such a choice can be made. With u(t) = 7,(t)
we have a formal variation which is no &* perturbation of an admissible variation.

The final conclusion of this section is a consequence of Theorem 3.7 and the given
formulation of an optimal control problem as a variational problem.

COROLLARY 5.5. Let OP(Z, %, qo, h, S) be a given optimal control problem.
Assume that the associated variational problem is normal for a given trajectory—input
{:1- B. Then { is stationary if and only if there exists an injective curve n:1->E (E
the canonical codistribution) such that my e mg o n={ (mr: M > B, mg: E » M natural
projections),

d
(5.12) N (:’ftl )eker dby

and, in case of a FE problem,
(5.13) (dh+64)|s(n(T)) =0,

where 0g=mwE(9|\dt)+0g is the Cartan form, h=romyomsch and S=
XUTQX{T})N M) for some section x: M — E.

Formula (5.12) defines a Cartan system. In fact one can use the intrinsic reduction
procedure given in [11, § I.e.1.] to study existence and uniqueness of solutions (see [6]).

In many practical optimal control problems ¥ depends on g and u only. We can
work out such a situation in coordinates as we did for the Lagrange problem. Choose
natural coordinates (g, u, i,t) on M and on E: (q, u, 4, A, u,t) (BEE=B =Y,
)\iﬁi‘l"Z;:_l :u‘jﬂn-i—j with Bk’ cf. (56)) Then

(5.14) 6= G(q, u) di+ .il Ai(dgi~ Fi(q, u) di)+ ﬁl i (du; — t; di).
i= j=

Some computation shows that condition (5.12) on a stationary curve n(f)=
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(q(8), u(1), u(r), A(t), w(t), t) yields the equations

d 1
Eq—f(q, u),

d 0% of )T
TIATT -\ \4 Aa
dt/\ P (g, u) (aq(q u)

%9 of T

—— —_f = A =O,
au(q, u) (au (g, u))

n=0, —‘dtu =U.

With the definition
(g, A, u) = 9(q, u)—A"f(q, u)

we obtain the familiar equations of Pontryagin’s maximum principle (smooth case):
X . K oK
j=—— =—(g, A —(q, A, u)=0.
(5.15) 4=—>7(q A u), P (g A1), (g, A, u)
The transversality condition (5.13) yields:
dh

. AT)=—(q(T)).

(5.16) (T) dq (q(T))

Remark 5.6. The Lagrange multiplier theorem 3.7 gives a necessary and sufficient
condition for formal stationarity. Therefore, these conditions are necessary for optimal-
ity. If the problem is not normal, then the conditions of Corollary 5.5 only are sufficient
for stationarity. Hence, for nonnormal problems ¢ may be stationary (although not
necessarily optimal) without being a projection of a stationary n in E. Higher order
theory provides better insight here. That means that we consider kth order conditions:

dj

j
del |-

O}(d)g):O (j=1,"',k)

and “k-formal variations” (variations which satisfy restrictions up to kth order). A
Lagrange multiplier theorem similar to 3.7 should then be formulated for ‘‘k-formal
optimality.” Obviously we speak of ““k-normality” in that case and in the CE case kth
order local controllability will actually ensure k-normality cf. Proposition 5.2 for k = 1.
Other approaches to higher order conditions can be found in the literature. [17] in
particular is closely related to the approach suggested here.

Examples of practical optimal control problems to illustrate the given set up would
easily lead to complicated calculations in coordinates, which do not essentially differ
from the normal approach on R" except for possible lower dimension and less con-
straints (e.g. we can use the two-dimensional sphere instead of R® with a restriction
to the sphere). We did not search for examples where the coordinate-free approach
might be profitable. Some may be found in [11]. The given approach can be generalized
to the infinite horizon optimal control problem (see [6]). We expect that our approach
might be particularly profitable there, for instance to obtain methods for computation
of optimal feedback controls in infinite horizon problems.
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